產(chǎn)品與解決方案/PRODUCT AND SOLUTIONS
少用電 用好電 再生電 存儲電 防爆電
解決方案
高壓變頻器在主抽風機同步電機上的應用
1引言
主抽風機是燒結廠最重要的設備之一,其作用是利用風機抽風產(chǎn)生的負壓將燒嘴噴出的火焰引至燒結料中,使其充分燃燒,生成合格的燒結礦。因此其運行中的各項參數(shù),對燒結礦的質量有很大的影響,同時,該風機電機又是耗能大戶,其電耗高達整個燒結生產(chǎn)線的三分之二。因此,實現(xiàn)對主抽風機各項參數(shù),特別是風量、風壓的合理的控制,是燒結廠提高生產(chǎn)效率、降低消耗的重要手段之一。目前濟南庚辰鋼鐵有限公司主抽風機配備為同步電機,電機工頻啟動采用串液水阻柜啟動方式,采用控制風門開度的方式,來實現(xiàn)主抽風機風量的調節(jié),這種控制方式運行效率低下。
(1)無法實現(xiàn)風機的實時調整,滿足不了生產(chǎn)過程中需要根據(jù)燒結工藝參數(shù)進行隨時調節(jié)風量的要求。
(2)電機始終處于額定轉速運行,運行效率低。
(3)水阻啟動柜無法實現(xiàn)真正意義上的軟啟動功能,且由于水電阻溫度的限制,連續(xù)啟動次數(shù)不允許超過3次。
鑒于以上問題,現(xiàn)在高壓大功率變頻器技術越來越成熟,鋼鐵廠領導決定采用高壓變頻器來調節(jié)風機電機的運行轉速,以提高風機的運行效率。
廠領導經(jīng)過多方調研、比較,決定采用新風光電子科技股份有限公司生產(chǎn)的同步電機高壓變頻器JD-BP37-5600F(5600kW/6kV),對其燒結系統(tǒng)主抽風機進行變頻節(jié)能控制。
2 設備參數(shù)
該廠燒結系統(tǒng)主抽風機電機額定電壓6kV,額定功率4200kW,具體參數(shù)如表1所示。
表1 主抽風機參數(shù) | ||
設備 | 分類 | 參數(shù) |
電機參數(shù) | 廠家 | 上海電機廠 |
型號 | T4200-4 | |
額定電壓 | 6000V | |
額定電流 | 465A | |
額定功率 | 4200 kW | |
功率因數(shù) | 0.9 | |
接法 | Y | |
額定轉速 | 1500r/min | |
勵磁電壓 | 46V |
根據(jù)現(xiàn)場設備參數(shù)及工藝為客戶選配的高壓變頻器JD-BP37-5600F技術參數(shù)如表2所示。
表2 風光高壓變頻器基本參數(shù) | ||
序號 | 名 稱 | 參數(shù) |
1 | 型式及型號 | 高-高方式JD-BP37-5600F |
2 | 技術方案 | 多電平串聯(lián)、電壓源型、高高方式 |
3 | 系統(tǒng)輸入電壓(kV) | 6 |
4 | 系統(tǒng)輸出電壓(kV) | 0~6kV |
5 | 系統(tǒng)輸出電流(A) | 673 |
6 | 額定輸入頻率/允許變化范圍 | 45-55Hz |
7 | 對電網(wǎng)電壓波動的敏感性 | +10%~-10%滿載輸出;降低35%以內降額連續(xù)運行;輸入電壓波動到額定電壓65%以下或突然停電在3秒內恢復可立即再啟動 |
8 | 變頻電源效率 | >96%(額定輸出時,含變壓器) |
9 | 輸入輸出電流諧波 | <3% |
10 | 輸入側功率因數(shù) | >0.98(20%負載以上) |
11 | 控制方式 | 多級正弦PWM控制 |
12 | 整流形式 | 二極管全橋整流 |
13 | 逆變形式 | IGBT單相逆變 |
14 | 過載能力 | 120%1min,150%3s |
15 | 模擬量信號(輸入)規(guī)格及數(shù)量 | 工業(yè)標準信號:4~20mA 3路 |
16 | 模擬量信號(輸出)規(guī)格及數(shù)量 | 工業(yè)標準信號:4~20mA 4路 |
17 | 防護等級 | IP31 |
18 | 操作鍵盤 | 人機界面 |
19 | 界面語言 | 簡體中文 |
3主回路改造方案
根據(jù)現(xiàn)場負載情況,配置由新風光公司生產(chǎn)的高壓變頻器JD-BP37-5600F,主回路采用一拖一手動旁路方案。改造后,保留原液阻軟啟動裝置及原高壓柜,改造后的主回路如圖1所示。
圖1 主回路方案
變頻運行方式:QF為用戶側高壓開關柜,其中變頻器旁路柜QS1、QS2、QS3為隔離開關, QS1、QS2與QS3之間有電氣互鎖。手動旁路柜變頻勵磁柜與變頻器配套提供,電機及用戶側高壓斷路器QF保留甲方原有設備。
變頻運行時,QS3斷開,變頻勵磁系統(tǒng)可以利用新風光同步勵磁控制系統(tǒng),QS1與QS2閉合,將勵磁刀閘切換到變頻勵磁系統(tǒng)。變頻器上電時,斷路器QF閉合,新風光高壓變頻器啟動時,以電勵磁同步機矢量控制方式拖動同步電機啟動。
變頻停機時,從現(xiàn)場向變頻器下達“停機”命令,變頻器驅動同步電機減速至完全停機,然后停止輸出電壓電流。最后在現(xiàn)場分斷斷路器QF,由其輔助觸點通知勵磁裝置滅磁,滅磁完成后關閉勵磁裝置電源。遇到故障時,變頻器在停止電壓電流輸出的同時,立即分斷上級斷路器QF,由變頻器主控通知勵磁裝置滅磁,然后投到工頻運行。
工頻運行時,QS1、QS2斷開,將勵磁刀閘切換到工頻勵磁系統(tǒng);QS3閉合,水阻軟起裝置投入工頻回路,同步電機的啟動、運行、停機過程按照原有邏輯進行。
4 高壓變頻器在同步機上的技術保證
風光高壓變頻器除了具有一般的高壓變頻功能外,還具有矢量控制技術、星點漂移技術、同步投切技術等,為保證高壓變頻器控制同步電機提供了有力保障。
(1)星點漂移技術:變頻器某相有單元故障后,為了使線電壓平衡,傳統(tǒng)的處理方法是將另外兩相的電壓也降至與故障相相同的電壓,而線電壓自動均衡技術通過調整相與相之間的夾角,在相電壓輸出最大且不相等的前提下保證最大的線電壓均衡輸出,提高了變頻器的可靠性。
(2)同步投切技術:在變頻器輸出能力足夠的情況下,利用電壓跟蹤和鎖相技術,將變頻器輸出電壓參考電網(wǎng)電壓進行幅值、頻率、相位的同期后,由變頻器和工頻電網(wǎng)同時向負載并網(wǎng)供電,并根據(jù)工況投切過程的需要,完成負載在變頻器和工頻電網(wǎng)間的轉移,最終使負載獨立工作在工頻或變頻運行狀態(tài),此技術為各種方案設計提供了支持。
不同于異步電機,同步電機的變頻控制,還需要解決以下問題:啟動整步問題,旋轉啟動中需要磁場位置識別,勵磁的給定方式和調節(jié)問題以及故障保護下的緊急滅磁等,都需要高壓變頻器具有先進的技術進行解決。
5 高壓變頻器同步電機的調試
5.1變頻器與勵磁柜的連線
高壓變頻調速系統(tǒng)與勵磁柜連接關系如圖2所示。
圖2 變頻器與勵磁柜連線
變頻器系統(tǒng)輸出給勵磁柜信號:
(1)勵磁電流調節(jié)給定(4-20mA模擬量信號):變頻器給定到勵磁柜,通過4-20mA電流控制勵磁柜輸出勵磁電流的大小。(注:有的勵磁柜通過接收增、減勵磁常開觸點信號來控制勵磁電流大小,通常是4-20mA模擬量)
(2)變頻器啟動信號(常開觸點):變頻器給到勵磁柜啟動信號,勵磁柜開始投勵磁。
(3)變頻器故障信號(常開觸點):變頻器在運行過程中出現(xiàn)故障時,將故障信號給定到勵磁柜,勵磁系統(tǒng)進行停機滅磁。
(4)工頻運行信號(常開觸點):變頻器給到勵磁柜工頻運行信號指示。工頻運行信號有效時,勵磁柜按照工頻運行的邏輯執(zhí)行;工頻運行信號無效時,即處于變頻運行狀態(tài),勵磁柜執(zhí)行變頻運行邏輯。
勵磁柜輸出給變頻器系統(tǒng)信號:
(1)實測勵磁電流(4-20mA模擬量信號):勵磁柜向變頻器傳輸實際輸出的勵磁電流。
(2)勵磁就緒信號(常開觸點):勵磁柜自檢無故障,具備投勵要求,此時勵磁柜向變頻器輸出勵磁就緒信號。
(3)勵磁故障信號(常開觸點):勵磁柜本身出現(xiàn)故障,勵磁柜將該信號傳給變頻器。
(4)勵磁啟動信號(常開觸點):變頻器給到勵磁柜開機信號,勵磁柜執(zhí)行命令開機運行后,反饋給變頻器勵磁啟動信號。
根據(jù)以上對信號的說明,測試常開點和常閉點的狀態(tài)。
5.2 開關邏輯、模擬量、勵磁電流等參數(shù)調試
(1)調試和勵磁柜之間的信號邏輯調試:通控制電,模擬調試開關量信號,變頻器報出勵磁柜開機異常,此時為變頻器停機,工頻運行狀態(tài)。與勵磁柜廠家溝通,要求勵磁柜廠家修改邏輯,無論變頻或者工頻運行狀態(tài)下,勵磁柜都要返回開機信號,修改邏輯后,調試正常。
(2)調試模擬量信號:4-20mA給定勵磁柜勵磁電流信號,勵磁柜廠家不斷調整,勵磁電流很難對準,后放棄小電流對應,直接對應250A以上勵磁電流,調整對應關系基本正常,偏差在10A以內。調試反饋勵磁電流,電流信號同樣從250A開始對應,基本線性對應。
(3)工變頻邏輯調試:使用外部單獨一塊主控板發(fā)送電網(wǎng)電壓數(shù)據(jù),模擬調試工變頻轉換的邏輯,并觀察勵磁電流的變化,邏輯正常,勵磁電流轉工頻時有個突然變大的趨勢,通過與勵磁柜廠家溝通,轉工頻設置的為投強勵,可以修改勵磁電流數(shù)值,可以設置為與變頻器轉工頻時勵磁電流數(shù)值相當?shù)闹?。將大線進行核對后,上高壓調試轉換邏輯,轉工頻和轉變頻邏輯正常。
(4)帶載調試:連接電機,設置變頻器參數(shù),變頻器啟動使用多段VF,轉矩提升設為0.6, 5.0Hz為1.5,8.0Hz為1.3,12.0Hz為1.0,中間頻率線性過渡??针姍C啟動,啟動低頻電流最大達到450A。啟動電流比較大,但是可以正常啟動。電流無劇烈震蕩變化。
電機運行10分鐘后,停機,廠家連接連軸器,帶風機運行,變頻器啟動使用多段VF,轉矩提升設為0.6, 5.0Hz為1.4,8.0Hz為1.3,12.0Hz為1.0,變頻器開機運行正常。啟動低頻電流最大達到350A。啟動正常,電流變化拐點在9Hz。
風機運轉,現(xiàn)場開始投產(chǎn),運行到45Hz,功率為3000kW左右。
(5)工變頻切換
將工頻旁路柜的小車搖進去,進行轉換,變頻器與電網(wǎng)在轉換過程中存在共存情況,轉過過程中的電流波形如圖3所示(100A/1V)。電流峰值在200A,有效值為140A,電機額定電流為464A。電流不大,說明變頻器輸出角度與電網(wǎng)角度基本一致。
圖3(a) 圖3(b)
連接電機線,試驗空電機的情況,轉工頻時電流波形如圖4所示。CH1為變頻器輸出電流,500A/5V,CH2為電機端電流,500A/500mV。轉工頻時變頻器輸出電流有效值約106A,與電網(wǎng)共存時電流變小。電機端電流稍微變大,與之前有1.1倍變化,又恢復正常。轉換時,勵磁柜投0.9倍的勵磁電流,之后勵磁電流恢復變頻器給定勵磁電流。
圖4(a) 圖4(b)
轉變頻試驗,轉變頻時電流波形如圖5所示。CH1為變頻器輸出電流,500A/5V,CH2為電機端電流,500A/500mV。轉換時,勵磁電流由工頻運行控制勵磁電流,保持勵磁電流不變,轉換完畢后,勵磁電流由變頻器控制勵磁電流。勵磁電流的初始值為工頻控制時的最后時刻的勵磁電流大小。轉換時輸出電流沒有突變。
圖5(a) 圖5(b)
現(xiàn)場連接連軸器,進行帶風機的試驗。試驗風機轉換時,風門全部關閉。轉工頻時電流波形如圖6所示。CH1為變頻器輸出電流,500A/5V,CH2為電機端電流,500A/500mV。轉工頻時變頻器輸出電流有效值約220A,與電網(wǎng)共存時電流變小。電機端電流稍微變大,與之前有1.1倍變化,又恢復正常。
圖6(a) 圖6(b)
轉變頻試驗。CH1為變頻器輸出電流,500A/5V,CH2為電機端電流,500A/500mV。轉換時,勵磁電流由工頻運行控制勵磁電流,保持勵磁電流不變,轉換完畢后,勵磁電流由變頻器控制勵磁電流。勵磁電流的初始值為工頻控制時的最后時刻的勵磁電流大小。第一次轉換,出現(xiàn)失敗,多個單元出現(xiàn)單元過壓,波形如圖7所示。
圖7(a) 圖7(b)
根據(jù)電流分析,變頻器輸出電流與電機電流相反,正好給變頻器充電導致變頻器過壓保護,變 頻器輸出角度滯后,將變頻器輸出角度補償增加3度,轉變頻功能試驗3次,均成功,電流波形如圖8所示。電流沒有突變。
圖8(a) 圖8(b)
轉變頻完畢后,電抗器從串入回路到從回路中切除的電流變化如圖9所示。電流變化不大,工變頻切換過程中,電機及現(xiàn)場工藝沒有發(fā)現(xiàn)異常。
圖9
試驗至此,現(xiàn)場人員表示試驗很成功。
6高壓變頻器節(jié)能情況
主抽風機同步電機相對其他風機來說,有著更大的節(jié)能空間,該高壓變頻器于2016年5月19日投入生產(chǎn),至今運行正常,改造達到了預期目的。
表3 4200kW/6kV同步電機改造前后參數(shù)對比表 | ||
運行參數(shù) | 運行電流(A) | |
改造前 | 風門開度50%左右 | 320.7 |
改造后 | 風門開度100% 運行頻率40Hz | 240.5 |
根據(jù)上表數(shù)據(jù)計算得知,4200kW燒結風機節(jié)電率達到25.0%。該套設備平均每年運行300天以上,每天以24小時計算,電費以0.41元/度計算,年節(jié)約費用高達:300*24*(3000.1-2249.3)*0.41=221.6萬元。
7 結束語
新風光電子科技股份有限公司生產(chǎn)的高壓變頻器在濟南庚辰鋼鐵有限公司主抽風機改造是成功的,改造后,主抽風機實現(xiàn)了軟起軟停止,可以對主抽風機根據(jù)生產(chǎn)需要進行調速控制,大大降低了電機運行電流,具有顯著的經(jīng)濟效益和社會效益,為大量高壓同步電機負載節(jié)能提供了新的改造途徑。